
FUNCTIONALITY-BASED APPLICATION CONFINEMENT:
Parameterised Hierarchical Application Restrictions

Z. Cliffe Schreuders, Christian Payne
School of IT, Murdoch University, South St, Murdoch, Western Australia

c.schreuders@murdoch.edu.au, c.payne@murdoch.edu.au

Keywords: Application-Oriented Access Control, Application Confinement, Sandbox, Functionality-Based Application

Confinement (FBAC), Role-Based Access Control (RBAC), Usable Security.

Abstract: Traditional user-oriented access control models such as Mandatory Access Control (MAC) and

Discretionary Access Control (DAC) cannot differentiate between processes acting on behalf of users and

those behaving maliciously. Consequently, these models are limited in their ability to protect users from the

threats posed by vulnerabilities and malicious software as all code executes with full access to all of a user's

permissions. Application-oriented schemes can further restrict applications thereby limiting the damage

from malicious code. However, existing application-oriented access controls construct policy using complex

and inflexible rules which are difficult to administer and do not scale well to confine the large number of

feature-rich applications found on modern systems. Here a new model, Functionality-Based Application

Confinement (FBAC), is presented which confines applications based on policy abstractions that can

flexibly represent the functional requirements of applications. FBAC policies are parameterised allowing

them to be easily adapted to the needs of individual applications. Policies are also hierarchical, improving

scalability and reusability while conveniently abstracting policy detail where appropriate. Furthermore the

layered nature of policies provides defence in depth allowing policies from both the user and administrator

to provide both discretionary and mandatory security. An implementation FBAC-LSM and its architecture

are also introduced.

1 INTRODUCTION

Traditional access control models such as

Mandatory Access Control (MAC), Discretionary

Access Control (DAC) and Role-Based Access

Control (RBAC) are based on the paradigm of

protecting users from one another (Department of

Defense, 1985, Ferraiolo et al., 1995). Consequently

programs typically run with all of the user's

privileges. These models cannot differentiate

between a program acting on the behalf of a user and

a program using its privileges nefariously (Miller

and Shapiro, 2003). As a result vulnerabilities and

malware represent a serious threat as malicious code

has unrestricted access to the user's privileges.

Existing application confinement schemes

attempt to address this by limiting the privileges

associated with processes, thereby mitigating the

impact from vulnerabilities and malicious code.

Several techniques have been developed to provide

application-oriented access controls; however, these

techniques do not provide abstractions which are

easy for users to apply, and do not scale well to

confine the numerous feature rich applications found

on modern systems.

A new application-oriented access control model

Functionality-Based Application Confinement

(FBAC) is presented which provides separation of

duties, defence in depth through layers of mandatory

and discretionary application-oriented access

controls and policy abstractions which are flexible,

manageable and easy to conceptualize.

2 APPLICATION-ORIENTED

ACCESS CONTROL MODELS

Existing application-oriented access control models

assign privileges using monolithic self-contained

non-hierarchical policy abstractions. This limits the

scalability of these approaches as these abstractions

can not adapt to the different security needs of

applications.

Isolation sandboxes such as chroot, BSD Jails

(Kamp and Watson, 2000), Solaris Zones (Tucker

and Comay), and Danali (Whitaker et al., 2002)

provide a single policy abstraction, the isolated

container, which simply restricts contained

applications to a limited namespace (Kamp and

Watson, 2004) or virtual machine (Madnick and

Donovan, 1973). Isolation requires significant

redundancy as shared resources need to be

duplicated (Krohn et al., 2005). It also inhibits the

ability of applications to easily and securely

exchange data as is commonly required.

Some application-oriented schemes mediate

access to specified resources by simply assigning

raw privileges to processes. These are either

coarsely grained (such as with POSIX capabilities

(Bacarella, 2002), and Bitfrost (Krsti and Garfinkel,

2007)) or finely grained (as with CapDesk (Miller et

al., 2004), Polaris (Stiegler et al., 2006), TRON

(Berman et al., 1995), Systrace (Provos, 2002) and

Janus (Wagner, 1999)). Methods of mediating this

type of access control include using capabilities

(Wagner, 2006) or system call interposition

(Goldberg et al., 1996). These privilege associations

provide very little policy abstraction other than the

granularity of the privileges assigned making the

policy either inexpressive or extremely large and

complex (Garfinkel, 2003). Translating high level

security goals into finely grained policies is difficult,

making these policies difficult to both construct and

verify for correctness (Marceau and Joyce, 2005).

Models such as Domain and Type Enforcement

(DTE) (Badger, 1996) which extends the type

enforcement model (Boebert and Kain, 1985) , Role-

Compatibility (RC) (Ott, 2002), and AppArmour

(previously known as SubDomain) (Cowan et al.,

2000) provide large inflexible policy abstractions

which, although capable of grouping related

privileges, cannot adapt to the various policy needs

of feature rich applications. For example, although a

DTE domain represents a policy abstraction,

domains typically apply to a single application only

(Marceau and Joyce, 2005). Additionally, there is

significant overlap of privileges granted to compiled

domain policies and yet domains are specified

separately (Jaeger et al., 2003).

Although some implementations of these models

allow a policy abstraction to be comprised of smaller

parts, these parts are reduced to a monolithic policy

abstraction either at system start-up or in advance,

which limits their flexibility. One example of this is

SELinux’s DTE Domains which can be specified

using macros in the m4 language which are

compiled in advance into many lines of rules,

thereby creating a single policy abstraction (a

Domain) directly containing all the relevant

privileges. Similarly, any abstractions in AppArmor

profiles are compiled away at system start-up and

applied as a raw list of privileges associated with the

application. This approach means that any finer

grained abstractions which may have been in place

when constructing policy is not available when

managing the privileges of a process.

DTE and RC policy abstractions define multiple

restricted environments and allow propagating

processes to transition between them. Specifying

these transitions is often a complex and error-prone

task. Programs need specific authorisation to label

files as being accessible in different domains or

roles, and users and programs both need permission

in order to execute programs belonging in another

domain or role (Hinrichs and Naldurg, 2006).

3 THE FBAC MODEL

Inspired by the Role-Based Access Control (RBAC)

model (Ferraiolo and Kuhn, 1992), behaviour based

process confinement research (Raje, 1999),

programming language features such as subroutine

parameterisation, and by applying a unique approach

to defence in depth, Functionality-Based Application

Confinement (FBAC) provides an expressive, finely

grained, yet easy to apply and manage application

confinement. In contrast to existing application-

oriented models FBAC allows reusable and flexible

policy abstractions to be defined which can be

adapted to suit the needs of different applications

with related security goals.

3.1 Functionality-Based

The design of the FBAC model originated from
observing the advantages that the RBAC model
brings to the management of user privileges and
FBAC employs an analogous paradigm for the
confinement of individual programs. While in
RBAC different users share common sets of
privileges relating to their role within an
organisation (Ferraiolo et al., 1995), in application
confinement each category of application requires
related sets of privileges corresponding to their
intended behaviour (Raje, 1999). Recognizing this
correspondence provides a convenient mechanism to
both model the privileges that a program requires
and for end users to assign a program the privileges
it needs based upon the functionality the application
performs. Therefore, while RBAC assigns privileges
to users according to their role, FBAC employs

reusable and flexible policy abstractions known as
functionalities describing the actions that an
application may legitimately perform. For example,
the shared functionality of different web browsers is
reflected in their requiring a common set of
privileges to carry out their tasks and forms the basis
on which end users assign an application
confinement policy.

Furthermore, applying an RBAC-like approach
to application confinement also provides the benefit
of separation of duties. Static separation of duty
prevents conflicting functionalities or privileges
from being assigned to the same application while
dynamic constraints ensure that specified sets of
privileges cannot be activated concurrently at
runtime.

3.2 Hierarchical Policy

Unlike existing application confinement models,
FBAC policies are constructed in a hierarchical
fashion by employing a ANSI/NIST RBAC-like
structure (Ferraiolo et al., 2001). This allows layers
of abstraction and encapsulation with high-level
functionalities describing the overall purpose of the
application (for example, web_browser and
email_client) and mid-level functionalities
specifying the functional components which make
these up such as http_client and pop3_client. These
in turn are built from low-level abstractions
describing the finely-grade privileges available on
the system, for example file_r for reading from a
file. This hierarchical structure improves the
manageability of policy by encapsulating details
while providing flexible abstractions for association
with specific applications. This allows FBAC
policies to be applied to multiple applications where
these have shared functionality and provides
improved scalability compared with existing finely
grained application confinement models.

The hierarchical design of FBAC's policy
abstractions allows small or large policy components
to be easily activated or deactivated at runtime. This
action may be initiated by the user, the administrator
or even the software itself. For example, in the case
of multi-functionality applications such as the Opera
web browser which also incorporates e-mail, IRC,
news reader and bittorrent client functionality, the
user can actively control the privileges currently
available to the program according to those
functionalities being used at the time. This is
analogous to a user under RBAC only activating the
rolls relating to the part of their job description they
are currently performing and allows the principle of
least privilege to be enforced. This level of run-time
policy control is not available with existing
application-oriented access control models such as

DTE or AppArmor where privileges are contained in
a monolithic abstraction associated with the security
context. For example, in DTE or AppArmor
dropping the ability to send emails would involve
transitioning to an entirely separate domain or
profile.

3.3 Functionality Parameterisation

Based on the results of previous research which
explored the use of parameterisation for application
sandboxes (Raje, 1999), functionalities are
parameterised to allow them to be applied to
different applications with similar functionality; for
example, two different web browsers. This allows
application confinement policies to be customised to
the specifics of each program (such as where it
stores configuration files etc.) while maintaining the
abstraction of the original policy specification.

FBAC functionalities are passed arguments in a
fashion similar to subroutines in programming
languages. Subsequently, the hierarchical
relationship between functionalities allows
arguments to propagate to any contained
functionality. By specifying resource names as
arguments functionalities can be reused within the
hierarchy to grant access to various resources.

Functionality definitions may contain default
argument values. This maintains abstraction and
simplifies the process of assigning functionalities to
applications in common cases while not restricting
flexibility where customisation is required.

Although the MAPbox mechanism (Acharya and
Raje, 2000) has previously employed
parameterisation to support application confinement,
FBAC overcomes limitations of this approach by
allowing confinement of multipurpose applications
and providing a more manageable policy structure
than that of MapBox, where users assign a complex
finely-grained list of privileges to each class.

3.4 Mandatory and Discretionary
Controls

Another feature of the FBAC model is its ability to
confine applications based upon the combination of
policies specified by both users and administrators.
While existing application oriented access controls
are generally designed to be applied as either a
discretionary control (such as Janus or TRON) or a
mandatory control (such as AppArmor or DTE),
FBAC allows both mandatory and discretionary
policies to be applied simultaneously. This allows
users to ensure their applications execute with least
privilege and protect themselves from malicious
code while also allowing administrators to restrict

applications to enforce system-wide security goals,
confine users to specific programs or to manage user
protection. Each of these policies is known as an
FBAC confinement and may reuse functionalities
from other confinements. The privileges of an
application therefore depend upon the intersection of
the privileges specified by the confinements which
apply to it. This layered approach to application
confinement is unique and provides defence in-depth
while requiring the maintenance of only a single
mechanism.

4 USING FBAC

The initial task of establishing functionalities

involves the construction of functionalities which

represent functional requirements of applications.

Functionalities can contain other functionalities and

can also contain direct privileges. The hierarchical

and modular nature of FBAC policy eases

management and maintenance. This initial

functionality creation task involves the analysis of

existing applications and requires some expertise

and would normally therefore be done by a trusted

third party.

However, subsequently users and administrators

can restrict applications with FBAC by simply

assigning the appropriate functionalities and

providing any arguments necessary to satisfy

parameters. This process is well suited to a GUI and

mostly involves pointing and clicking. Familiarity

with the FBAC-LSM policy language is unnecessary

for ordinary users who can simply use graphical

tools to confine applications.

Administrators can easily limit users to specific

applications and specify what those applications can

do. Users may then supply more restrictive

parameters protecting their own resources from the

application.

5 REPRESENTING POLICY

Figure 1 is an example policy representation of a
simple functionality which provides an abstraction
to read the contents and attributes of a file. The first
line simply specifies the name of the functionality
(functionality [name]). The directives
which detail the functionality are enclosed in curly
braces. Each directive ends in a semicolon. The first
two directives are for a graphical tool to describe the
purpose and level of detail of the functionality. Then
a parameter named files is specified; its default

value is to grant access to nothing (parameter
[parameter name] "[default value]").
After the purpose of this parameter is described, two
privileges are included, which permit access to the
files described by the parameter. (privilege
[operation name] ["literal

filename" or parameter name]).
A functionality can also contain another

functionality with the following syntax
(functionality [functionality name]
([optional parameter name=]

[["literal filename" or parameter

name], ...))
Application profiles share a similar syntax, with

a difference in the initial definition (application

[name]) and contain a list of binaries which make

up the application (binarypaths

[path]:[path…]).

functionality files_r

{

 functionality_description "read

access to these files";

 lowlevel;

 parameter files "";

 parameter_description "allows these

files to be accessed as described";

 privilege file_read files;

 privilege file_getattr files;

}

Figure 1: Low-level FBAC-LSM functionality and

privileges

6 THE IMPLEMENTATION -

FBAC-LSM

A prototype implementation of FBAC is near

completion. FBAC-LSM is a Linux Security Module

(LSM) (Wright et al., 2002) with accompanying

policy tools. As Figure 2 illustrates, FBAC-LSM is

comprised of a graphical Policy Manager tool which

is used to maintain policy, the LSM which resides in

kernel space and enforces security decisions, a

Policy Server which feeds the policy into the LSM

via a virtual file system at system boot or on request,

and a graphical Process Manager tool which can be

used to activate or deactivate the functionalities

associated with a running process. When an

application attempts to access any mediated

resource, after standard DAC rules apply, the LSM

is consulted and the request is either allowed or

rejected based on the FBAC policy as represented in

the LSM. Figure 3 illustrates the simple task of

selecting functionalities using the graphical Policy

Manager.

Figure 2: FBAC-LSM architecture

Figure 3: The graphical FBAC-LSM Policy Manager tool

7 RESEARCH STATUS

FBAC-LSM has shown promising results and a

hierarchy of functionalities that represent the

functionalities required for some common

applications, such as web browsers, has been

developed. When the prototype system is complete a

detailed study comparing the security and usability

of the new system with existing systems such as

SELinux and AppArmor will be presented and

FBAC-LSM will be made available open source

using the General Public Licence.

8 CONCLUSIONS

FBAC consolidates concepts from user-oriented

access control, and application sandboxing research

to provide an application-oriented access control

model which confines applications in terms of the

functions they perform. Policy is hierarchical,

parameterised and multi-layered. This approach

provides security and policy management benefits

such as conceptual simplicity through abstraction

and encapsulation, policy reusability and flexibility,

improvements in scalability, separation of duties,

dynamic process controls, and defence in depth.

Preliminary results of the new model are promising

and further study of the efficacy of the model in

action is warranted.

ACKNOWLEDGEMENTS

The authors would like to thank Dr Tanya McGill

for her guidance in the preparation of this paper. We

also acknowledge the valuable feedback and

comments of the reviewers.

REFERENCES

ANSI INCITS 359-2004. American National Standards

Institute / International Committee for

Information Technology Standards

(ANSI/INCITS).

Acharya, A. & Raje, M. (2000) MAPbox: Using

Parameterized Behavior Classes to Confine

Applications. Proceedings of the 2000 USENIX

Security Symposium. Denver, CO, USA.

Bacarella, M. (2002) Taking advantage of Linux

capabilities. Linux Journal, 2002.

Badger, L. (1996) A Domain and Type Enforcement

UNIX Prototype. Computing Systems, 9, 47-83.

Berman, A., Bourassa, V. & Selberg, E. (1995) TRON:

Process-Specific File Protection for the UNIX

Operating System. Proceedings of the 1995

Winter USENIX Conference.

Boebert, W. E. & Kain, R. Y. (1985) A Practical

Alternative to Hierarchical Integrity Policies.

Proceedings of the 8th National Computer

Security Conference, 18–27.

Cowan, C., Beattie, S., Kroah-Hartman, G., Pu, C., Wagle,

P. & Gligor, V. (2000) SubDomain:

Parsimonious Server Security. USENIX 14th

Systems Administration Conference (LISA).

LSM

Policy Server

Kernel space

User space

Policy

Process Manager

Application

Policy Manager

Department of Defense (1985) Trusted Computer Security

Evaluation Criteria. DOD 5200.28-STD.

Ferraiolo, D., Cugini, J. A. & Kuhn, R. (1995) Role-Based

Access Control (RBAC): Features and

Motivations. Annual Computer Security

Applications Conference. Gaithersburg, MD,

USA, IEEE Computer Society Press.

Ferraiolo, D. & Kuhn, R. (1992) Role-Based Access

Control. 15th National Computer Security

Conference. Baltimore, MD, USA.

Ferraiolo, D. F., Sandhu, R., Gavrila, S., Kuhn, D. R. &

Chandramouli, R. (2001) Proposed NIST

Standard for Role-Based Access Control. ACM

Transactions on Information and System

Security, 4, 224–274.

Garfinkel, T. (2003) Traps and Pitfalls: Practical Problems

in System Call Interposition Based Security

Tools. Proceedings of the 10th Network and

Distributed System Security Symposium.

February ed. San Diego, CA, USA, Stanford

University.

Goldberg, I., Wagner, D., Thomas, R. & Brewer, E. A.

(1996) A Secure Environment for Untrusted

Helper Applications: Confining the Wily

Hacker. Proceedings of the 6th USENIX

Security Symposium. San Jose, CA, USA,

University of California.

Hinrichs, S. & Naldurg, P. (2006) Attack-based Domain

Transition Analysis. 2nd Annual Security

Enhanced Linux Symposium. Baltimore, Md.,

USA.

Jaeger, T., Sailer, R. & Zhang, X. (2003) Analyzing

Integrity Protection in the SELinux Example

Policy. Proceedings of the 12th USENIX

Security Symposium, 59–74.

Kamp, P.-H. & Watson, R. (2000) Jails: Confining the

Omnipotent Root. Sane 2000 - 2nd International

SANE Conference.

Kamp, P.-H. & Watson, R. (2004) Building Systems to be

Shared Securely. ACM Queue, 2, 42-51.

Krohn, M., Efstathopoulos, P., Frey, C., Kaashoek, F.,

Kohler, E., Mazieres, D., Morris, R., Osborne,

M., Vandebogart, S. & Ziegler, D. (2005) Make

least privilege a right (not a privilege).

Procedings of 10th Hot Topics in Operating

Systems Symposium (HotOS-X). Santa Fe, NM,

USA.

Krsti, I. & Garfinkel, S. L. (2007) Bitfrost: the one laptop

per child security model. ACM International

Conference Proceeding Series, 229, 132-142.

Madnick, S. E. & Donovan, J. J. (1973) Application and

Analysis of the Virtual Machine Approach to

Information Security. Proceedings of the ACM

Workshop on Virtual Computer Systems.

Cambridge, MA, USA.

Marceau, C. & Joyce, R. (2005) Empirical Privilege

Profiling. Proceedings of the 2005 Workshop on

New Security Paradigms, 111-118.

Miller, M. S. & Shapiro, J. (2003) Paradigm Regained:

Abstraction Mechanisms for Access Control. 8th

Asian Computing Science Conference

(ASIAN03), 224–242.

Miller, M. S., Tulloh, B. & Shapiro, J. S. (2004) The

structure of authority: Why security is not a

separable concern. Multiparadigm Programming

in Mozart/Oz: Proceedings of MOZ, 3389.

Ott, A. (2002) The Role Compatibility Security Model.

7th Nordic Workshop on Secure IT Systems.

Provos, N. (2002) Improving Host Security with System

Call Policies. 12th USENIX Security

Symposium. Washington, DC, USA, USENIX.

Raje, M. (1999) Behavior-based Confinement of

Untrusted Applications. TRCS 99-12.

Department of Computer Science. Santa

Barbara, University of Calfornia.

Stiegler, M., Karp, A. H., Yee, K. P., Close, T. & Miller,

M. S. (2006) Polaris: virus-safe computing for

Windows XP. Communications of the ACM, 49,

83-88.

Tucker, A. & Comay, D. Solaris Zones: Operating System

Support for Server Consolidation. 3rd Virtual

Machine Research and Technology Symposium

Works-in-Progress.

Wagner, D. (2006) Object capabilities for security.

Conference on Programming Language Design

and Implementation: Proceedings of the 2006

workshop on Programming languages and

analysis for security, 10, 1-2.

Wagner, D. A. (1999) Janus: An Approach for

Confinement of Untrusted Applications.

Technical Report: CSD-99-1056. Electrical

Engineering and Computer Sciences. Berkeley,

USA, University of California.

Whitaker, A., Shaw, M. & Gribble, S. D. (2002) Denali:

Lightweight virtual machines for distributed and

networked applications. Proceedings of the 5th

USENIX Symposium on Operating Systems

Design and Implementation, 195–209.

Wright, C., Cowan, C., Smalley, S., Morris, J. & Kroah-

Hartman, G. (2002) Linux Security Module

Framework. Ottawa Linux Symposium. Ottawa

Canada.

